45 research outputs found

    Hard Mixtures of Experts for Large Scale Weakly Supervised Vision

    Full text link
    Training convolutional networks (CNN's) that fit on a single GPU with minibatch stochastic gradient descent has become effective in practice. However, there is still no effective method for training large CNN's that do not fit in the memory of a few GPU cards, or for parallelizing CNN training. In this work we show that a simple hard mixture of experts model can be efficiently trained to good effect on large scale hashtag (multilabel) prediction tasks. Mixture of experts models are not new (Jacobs et. al. 1991, Collobert et. al. 2003), but in the past, researchers have had to devise sophisticated methods to deal with data fragmentation. We show empirically that modern weakly supervised data sets are large enough to support naive partitioning schemes where each data point is assigned to a single expert. Because the experts are independent, training them in parallel is easy, and evaluation is cheap for the size of the model. Furthermore, we show that we can use a single decoding layer for all the experts, allowing a unified feature embedding space. We demonstrate that it is feasible (and in fact relatively painless) to train far larger models than could be practically trained with standard CNN architectures, and that the extra capacity can be well used on current datasets.Comment: Appearing in CVPR 201

    Web-Scale Training for Face Identification

    Full text link
    Scaling machine learning methods to very large datasets has attracted considerable attention in recent years, thanks to easy access to ubiquitous sensing and data from the web. We study face recognition and show that three distinct properties have surprising effects on the transferability of deep convolutional networks (CNN): (1) The bottleneck of the network serves as an important transfer learning regularizer, and (2) in contrast to the common wisdom, performance saturation may exist in CNN's (as the number of training samples grows); we propose a solution for alleviating this by replacing the naive random subsampling of the training set with a bootstrapping process. Moreover, (3) we find a link between the representation norm and the ability to discriminate in a target domain, which sheds lights on how such networks represent faces. Based on these discoveries, we are able to improve face recognition accuracy on the widely used LFW benchmark, both in the verification (1:1) and identification (1:N) protocols, and directly compare, for the first time, with the state of the art Commercially-Off-The-Shelf system and show a sizable leap in performance
    corecore